A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

نویسندگان

  • Lingling Shi
  • Suncica Canic
  • Annalisa Quaini
  • Tsorng-Whay Pan
چکیده

We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube’s elastic membrane walls producing a traveling wave in the form of a “step-function” traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our “optimal swimmer” is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re = 10−6), reported in [11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers

A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated.  Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.

متن کامل

Designing Micro- and Nanoswimmers for Specific Applications

Self-propelled colloids have emerged as a new class of active matter over the past decade. These are micrometer sized colloidal objects that transduce free energy from their surroundings and convert it to directed motion. The self-propelled colloids are in many ways, the synthetic analogues of biological self-propelled units such as algae or bacteria. Although they are propelled by very differe...

متن کامل

Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we...

متن کامل

Modeling and Simulation of Spherical and ‎Cylindrical Contact Theories for Using in ‎the Biological Nanoparticles Manipulation

The low Young's modulus of biological particles results in their large deformation against the AFM probe forces; therefore, it is necessary to study the contact mechanics of bioparticles in order to predict their mechanical behaviors. This paper specifically deals with the contact mechanics of DNA nanoparticles with spherical and cylindrical shapes during manipulation. In previous studies, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 314  شماره 

صفحات  -

تاریخ انتشار 2016